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Imperfection Sensitivity of Axially Compressed Stringer
Reinforced Cylindrical Panels under Internal Pressure

WENDELL B. STEPHENS*
Harvard University, Cambridge, Mass.

This paper is a study of the effects of longitudinal edge stiffness and internal pressure on the
buckling and initial postbuckling behavior of axially compressed long cylindrical panels. Two
methods of solution are presented. The first is a series solution where the torsional rigidity
of the edge stiffeners is not included and the second is a numerical solution where the tor-
sional rigidity of the edge stringers is included. The results show that both internal pres-
sure and the edge stiffener torsional rigidity tend to increase the panel buckling strength
and the panel insensitivity to initial imperfections.
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Nomenclature

coefficients defined in Eq. (35)
series coefficients used in Eqs. (29) and (30)
initial postbuckling coefficient defined in Eq.

(8)
{3(1 - „«)}!'»
arbitrary constant

= Young's modulus
= constant evolving from Stokes' transforma-

tion, seeEq. (31)
= stress function
= 2cF/(Et*), nondimensional stress function

= defined in Eqs. (3) and (5)

= defined in Eqs. (44) and (19), respectively
= initial postbuckling parameter defined in Eq.

(13)
= shear modulus of the stiffener
= torsional constant for the stiffener
= bending stress resultants
= (R/2cEt*)(Mx,My,Mxy), nondimensional bend-

ing stress resultants
= membrane_stress _resultant
= R / ( E t * ) ' ( N x , N y j N x y ) , nondimensional mem-

brane stress resultants
= applied internal pressure
= pR*c/(EP)

qo _______ = (2c#/01/2
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R = cylindrical panel radius
S = series summation defined in Eq. (40)
t_ _ = shell thickness
U,V,W = displacements defined in Fig. 1
U,V = qo/t( U, V), nondimensional displacements
W — W/t, nondimensional displacement

Wff,Wp = defined in Eqs. (3-5)
w,wa,wp = defined in Eqs. (19-43)
%,y — Cartesian coordinates, see Fig. 1
x = xqo/R, nondimensional axial distance
y — y<lo/R> nondimensional circumferential dis-

tance
a = amplitude of F(1>, defined by Eq. (15)
/S0 = angle in radians between adjacent stiffeners
7 = qQGJ/(DR), torsional rigidity parameter
5 = amplitude of buckling displacement, see Eq.(3).5 = amplitude of a small geometrical imperfection
A0,An = determinants defined by Eqs. (39) and (35),

respectively
0 = go^o/ (2 TT), flatness parameter
0cr = value of B(p, 7) when 6 = 0
A = load parameter defined in Eq. (3)
X = ratio of the wavelength in the y direction to

the wavelength in the x direction
v = Poisson's ratio
a = applied axial compressive stress
a- = aRc/(Et), nondimensional axial compressive

stress
o-cr = minimum eigenvalue as a function of X or

critical buckling load
vs = critical buckling load for an imperfect struc-

ture defined in Fig. 2

1. Introduction

IN Ref. 1, the buckling and initial postbuckling behavior
of an axially compressed narrow cylindrical panel is

presented. Such panels occur in longitudinally stiffened
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Fig. 1 Panel geometry and sign convention.

cylinders. In that study it was found that the panels,
whose geometry was described by a "flatness" parameter
0, have stable initial postbuckling behavior for values of 6
less than 0.64. Here, 0 is defined as

B = g0/V2 (1)
where /30 is the panel central angle in radians between adjacent
equally spaced stringers and q0 is a measure of the shell radius
to thickness ratio. The analysis was limited to values of 6
less than 1. This is because the problem is characterized
by a unique buckling mode only for values of B less than 1.
For those values, the panel buckling stress is higher than
that of the unstiffened cylinders. For wide panels (B > 1.0),
there is no unique buckling mode and the buckling stress is
equal to that of the unstiffened cylinder.

This study extends the work in Ref. 1 to include the tor-
sional rigidity of the stringers and internal pressure on the
panel. It was expected in Ref. 1 that the inclusion of tor-
sional rigidity of the stringers would have two effects: 1) it
would increase the upper limit on B in which unique modes
would occur, and 2) it would also increase the limiting value
of 6 for which there is stable postbuckling behavior. Both
of these effects are studied in this paper.

The problem is studied within the context of the Karman-
Donnell equations, described by two dependent variables;
W, the normal deflection, and F, the stress function. The
analysis is based on Koiter's general theory of postbuckling
behavior, which is presented concisely in Refs. 2 and 3.

Two separate methods for solving the governing equations
are presented. First, the problem with internal pressure but
without torsional rigidity is solved by means of a serious solu-
tion. This method of solution was applied to Koiter's
original narrow panel problem by Budiansky4 and is extended
here to include internal pressure. The second method is a
numerical solution to the problem which includes both the
torsional rigidity of the stringers and an internal pressure
on the panel. For this case, a series solution is not tractable
and a numerical method is required.

2. Buckling and Initial Postbuckling Analysis

The nondimensional Karman-Donnell equations for a
cylindrical panel subjected to a nondimensional internal
pressure p are

VW + F" = 2c{F"W" + F"W" - 2F''W} + p/c
V4F - W" = 2c{W"W~ - W''*} (2)

where W is the nondimensional deflection and F is the non-

dimensional Airy stress function. Here F is related to the
nondimensional stress resultants by F" = NX,F" = Ny F'' =
—Nxy. The primes and dots represent, respectively, deriva-
tives with respect to the nondimensional axial distance x and
the nondimensional circumferential distance y. The symbol
V4( ) is defined in the usual manner as {( )" + ( )"}2.
The constant c and the relationship between dimensional
and nondimensional variables are defined in the nomenclature.
The sign convention is described in Fig. 1. The reworked
version of Koiter's general theory of buckling and postbuck-
ling analysis previously described2 assumes asymptotic ex-
pansions for W,F of the form

w\ . iw«»] d1 = A { _ } + - ... (3)

where W^\F^ defines the prebuckled state and WM,F™
describe the buckling mode. The quantities W^\F^ and
higher order terms are orthogonal to the buckling mode.
The scalar A is a loading parameter with which the loading
increases proportionally. In the present problem, however,
the internal pressure is held fixed, while only the axial stress
is allowed to vary proportionally. Thus, Eq. (3) for the
present problem becomes

W,
-f

J
r«j
^(2) f (4)

Here the prebuckling state is represented by a membrane
stress state and the deflection is approximated to sufficient
accuracy by a constant such that

and
Wp = p/c

= v/c

Fp = (5a)

(5b)
where o- is the average nondimensional axial compressive
stress and is regarded as the load parameter. The first-
order set of equations describes the classical eigenvalue
problem for the critical load parameter o-cr, and is given by

(6)

(7)

where W(^ is chosen such that its maximum value is unity.
In the postbuckling region, it is shown in Refs. 2 and 3 that

or/crcr == 1 + ad/t + + (8)
This relation is necessarily symmetric for the present problem
since there are many waves in the x direction. Therefore,
a = 0. A general expression for 6, the postbuckling param-
eter, is given in Ref. 2; for this problem, it reduces to

ff<rcr(WW)*dxdy (9)
Here the second-order terms W^\F(^ are required for the
evaluation of b. Using Eqs. (2,4,6-8), and a = 0, the gov-
erning equations for W(2) and F(2) are

-f 2o-crW<2>" =
(10)

(11)

If b is positive, the initial postbuckling behavior will not be
very sensitive to small imperfections and the initial post-
buckling behavior is stable. If b is negative, the structure
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is sensitive to small geometrical imperfections that can
greatly reduce the buckling load. Koiter obtained an ex-
pression for the static buckling strength <rs of a structure with
an initial midsurface imperfection of magnitude 3 and with
a shape corresponding to the classical buckling mode. Sup-
pose the structure, when perfect, obeys the symmetric load-
postbuckling deflection relation (a = 0) given by Eq. (8);
Koiter's result for the imperfect structure, which is asymp-
totically valid for small §, is

- crs/crcr)3/2 (12)

The symmetric postbuckling behavior of the structure with
a small initial geometric imperfection and b negative is de-
picted by the dotted line in Fig. 2. Thus, the loss in buckling
strength is of the order of (3/£)2/3- Another parameter used
in Refs. 1 and 2 to demonstrate the initial postbuckling be-
havior is the initial postbuckling stiffness parameter K.
This parameter is defined conveniently in Ref. 2 and, for
this problem, becomes

K = c*ff
b(TCTff dxdy ) (13)

The parameter K is the ratio of the postbuckling stiffness to
the prebuckling stiffness and gives the initial postbuckling
slope of the load-end shortening curve.

3. Panel Buckling with Torsional Rigidity
of Stiffeners Neglected: Series Solution

The solution for the panel buckling and postbuckling be-
havior without torsional rigidity requires certain simplifying
assumptions along the shell boundaries. Since the panel is
very long, the boundary conditions at the panel ends have
no appreciable effect and solutions that are periodic in the
axial direction x are sought. At the boundaries y = 0,
g0/3o, the edges are assumed to remain straight and both the
flexural rigidity in the tangential direction and the torsional
rigidity of the stiffeners are neglected. These conditions
coupled with the evenness of the tangential displacement V
about the stiffener, yield the following boundary conditions

, y = 0, (14)

These conditions are satisfied by assuming solutions to Eqs.
(6) and (7) of the form

(15)
sinXz/20 siny/20

F™ = a sinXz/20 sim//20

where 0 = q0/30/2ir. Here a is the amplitude of Fw and the
amplitude of W(l) is set to unity. Since it is anticipated that
there be only one half-wave in the y direction, then X can be
interpreted to be the ratio of the buckling wave length in the
y direction to the buckling wavelength in the x direction. By
substituting Eqs. (15) into Eqs. (6) and (7), the values of a
and the eigenvalue <7cr become

(16)
(17)

where

a = -

-cr = (i/802){a + 160 */«} +

ft = (X2 + 1)VX2

To obtain the minimum eigenvalue, Eq. (17) is minimized
with respect to X. The result yields the value of X, which,
for a given pressure p, minimizes arCT. It is algebraically
much simpler, however, to use the resulting expression as a
definition of pressure for a given X. This result is

p = (1/802){1 - 160V&2HX4- 1}

Fig. 2 Buckling
of imperfection
sensitive shells.

Equations (10) and (11), which govern second-order non-
homogeneous boundary-value problems, contain quadratic
terms of TF(1) and F(l\ which are either independent of the
x coordinate or proportional to cos(Xx/0). This implies
that the solution to Eqs. (10) and (11) can be written in the
separated form of

= c{wa(y)

= c{fa(y) cosXz/0}
(19a)

(19b)
By substituting Eqs. (19) into Eqs. (10) and (11), the follow-
ing two sets of ordinary differential equations are derived :

^"' - 2pwa" = £(

/«••" = (X2/1604)

(20)

(21)

and

The boundary conditions for Eqs. (20) and (21) are

wa' = /«- = 0, y = 0
wa' = wa'" = fa = /a'" = 0, y = qA/2

and for Eqs. (22) and (23),

wft = Wft = fa = /£*" = 0, y = 0

to/s* = wi" = U = fo" = °> y = tfo/V2

(24)

(25)

Since the circumferential displacement must be single-valued
for any complete circumferential circuit, an additional bound-
ary condition is derived from

which implies that

fV.vdy = 0

wady = 1602

(26)

(27)

This additional condition with Eqs. (24) uniquely defines wa
and fa and is determined to within an arbitrary constant.
Thus, the solutions to Eqs. (20) and (21) with boundary
conditions (24) and (27) are

wa = -1/1602 + [02X2/20(1
fa = Co + (X2/16) cosy/0

cos7//0
(28)

(18)

where c0 is an arbitrary constant. The constant c0 need not
be determined since an inspection of Eq. (9) shows that only
second derivatives of /« are required for the postbuckling
analysis.
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Fig. 3 Critical stress <rcr and initial imperfection sensi-
tivity b vs internal pressure p for various values of 6 at

7 = 0.

Solutions to Eqs. (22) and (23) with boundary conditions
(24) are assumed to be the infinite series

(29)

z. n
bn cos— y (30)

Each term of fp satisfies the boundary conditions so differ-
entiation can be interchanged with summation. Each term
of Wp, however, does not satisfy the boundary conditions, and
it is necessary to use Stokes transformations to express the
fourth derivative of Wp as

n=l ,2

where e is a constant to be determined. Equations (29-31) are
substituted into Eqs. (22) and (23), yielding two equations
for a0 and 60 in terms of the constant e and 2n equations for
an and bn when n > 0. The condition that the stiffener
edges remain straight yields the extra condition for deter-
mining e. This condition becomes

oo =• - E ft. (32)
71=1, 2

The coefficients an and bn from the 2n equations become

an = -e(d/\YBn/kn (33)

bn = e(0/X)2l/A, (34)

(35)
#n = (0/X)*{(n/0)2 + (X/0)2}2

when n > 0. Also from the two equations when n = 0 and
Eq. (32), the definitions a0j&o, and e are obtained as follows:

aQ = OS/2A002){l/802 + (X/0)2l/fi} (36)

where

and for brevity

S> =

(38)

75 ~ -t T (39)

(40)

Thus the second-order solution is now complete in terms of
the summation S.

The expression for the postbuckling parameter b in Eq. (9)
is now integrated using Eqs. (15,28-30) to yield

2^2(7cr

X2

12r«.- 20(1 (41)

And finally the postbuckling stiffness parameter K becomes

K = {1 + c2X2/1602&o-cr} -1 (42)

For the case where p = 0 and X = 1, Eqs. (40-42) reduce
to those results given in Refs. 1 and 4.

4. Panel Buckling with Torsional Rigidity :
Numerical Solution

The problem is now solved with the torsional rigidity of
the longitudinal edge stiffeners included. This inclusion
changes the buckle shape from the simple sinusoidal de-
flection in the y direction, and the series solution for this
problem is extremely laborious. Therefore, a numerical
solution in the y direction is used. Thus, separated solutions
to Eqs. (6) and (7) of the form

= w(y) cos(X/20)z

= f(y) cos(X/20)z

(43)

(44)

are sought where the variables w and / are solved for nu-
merically.

This method was used on a similar problem by Hutchin-
son.5 Equations (6) and (7) with Eqs. (43) and (44) give

p w"

«»
which are ordinary homogeneous equations in / and w. The
boundary conditions at y = 0 are similar to those in Eqs.
(14) except for the second condition on TF(1). Here the panel
edge bending moment is set equal to the torsional moment in
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the stringer. This condition reduces to 2 -

(47)

where G is the stiffener shear modulus, / is the stiffener tor-
sion constant, R is the cylindrical panel radius and D is the
panel bending stiffness defined by D = Et*/4c*. Here, a
free torsion (unconstrained) model of the stiffener was used.
There is no twisting of the stiffener in the prebuckled state
since deformation of the cylinder is axisymmetric. The
boundary condition (47) is for the buckling state and assumes
that the stiffener is free to twist throughout its length. In
terms of w and /, the boundary conditions at y = 0 are

/ = /" = 0, w = 0, (X2/802)7W - w" = 0 (48)

where 7 = qoGJ/(DR). As before, it is convenient to make
use of the symmetry of the eigenmode at y = qopo/2. These
conditions become

w- = n,- = 0 /' = /- = 0 (49)
Equations (45) and (46) and the boundary conditions (48)
and (49) are represented numerically using central differ-
ences, and the determinant is found by using a Potter's
method of Gaussian elimination. The critical a for a given
value of X occurs when the determinant is zero. The classical
buckling stress o-cr is the minimum value of the critical a
which occurs over all X. The amplitude of w at y = qo/3o/2
is taken to be unity and the functions of w and / are deter-
mined.

The solutions of the second-order equations (10) and (11)
again written in the separated form of Eqs. (19). These
equations are reduced to the following sets of ordinary non-
homogeneous equations :

wa~~ - 2pwa" = - (50)
(51)

and

f"v> - (52)

/ A V
(20) (53)

The equation for the postbuckling parameter 6 reduces to

6 __ A Cq^0'/2 \ I 1 \
7l 2\ ~ In I ~~fW' [ Wa + T: Wfl" I +1 I — v } » /U I \ x /\-*- K / •' ^ ^ y A i

f'WWp - f'W \Wa' - - Wp] - f'W'WB -
\ 2 /

rJo
Qoj8o/2

(54)

where only first derivatives of wa and the second derivatives
of fa are required. The boundary conditions on Eqs. (50)
and (51) are identical to those given in Eq. (24). It is im-
portant to observe that the second-order deflection W(2) does
not tend to twist the stiffener but instead is an even function
about the stiffener.

Thus Eqs. (50) and (51) with the boundary conditions
(24) are uncoupled ordinary nonhomogeneous differential

10,000

Fig. 4 Limiting values of 6 for which the analysis is valid
as a function of y(p = 0).

equations that are solved numerically for wa and fa using
the quadratic terms of w and / given from the first-order
solutions.

The boundary conditions on Eqs. (52) and (53) are identical
to those given in Eqs. (25). These equations are also solved
numerically using the Potter's Gaussian elimination scheme.

5. Results and Discussion

In Fig. 3 the results for o-cr and b are plotted as a function
of internal pressure p for several values of 6. The results
agree with those presented by Koiter1 for o-cr, 6, and K when
internal pressure is zero. The curves show that increasing
the internal pressure tends to increase aCT and also to make
the panel more insensitive to initial imperfections. The
value B at which b = 0 is defined as 0cr. The amount of
pressure required to obtain 0cr increases with increasing 6.
These results correspond to the series solution being summed
over the first 40 terms.

In Figs. 4-8, the effect of the edge stiffener torsional
rigidity on buckling and initial postbuckling behavior is in-
cluded in the analysis as well as the internal pressure on the
panel. These results were obtained using the numerical ap-
proach with 30 finite difference increments taken from y = 0

4.0 p = 0

0 Series Solution at y = 0

1-1/2

1000

Fig. 5 Critical stress <rGT and initial imperfection sensi-
tivity b vs 7 for various values of 6 and p = 0.
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Fig. 6 Plot of 0cr as a function of internal pressure p for
various values of torsional rigidity 7.

to y = qofto/2. The numerical results and the series solu-
tions agreed to within 1% for the cases where 7 = 0.

Figure 4 shows the limiting values of 6 denoted as 6L for
which the analysis is valid. It was shown in Ref. 1 that 0
could not exceed 1, since for higher values of 6, the analysis
would produce nonunique solutions. It was suggested in
Ref. 1, however, that the torsional stiffness parameter 7 would
increase the range over which the analysis is valid. The
validity of this suggestion is demonstrated by the curve in
Fig. 4. Points lying in the region below the solid curve are
those included in this analysis. The emergence of more
than one minimum for a as a function of A was clearly noted
when 6 exceeded 6L when the pressure was zero. This phe-
nomenon did not appear when values of pressure greater
than zero were introduced and, therefore, the curve was
obtained only for the value of p = 0.

3 r

.6
_I
1.0

.5

1- v*

-i.o I I I
0 .2 .4 1.0.6 .8

2_
p , -£-(-£-] p

E V t /
b)

Fig. 7 Typical curves for 0cr and b at 6 — 0.9 as a function
of internal pressure and for various values of torsional

rigidity 7.

y = 0

6/t

a)
6/t
b)'

= 100.0

\0.1

6/t
c)

Fig. 8 Typical initial postbuckling slopes B = 0.9 for
values of torsional rigidity 7 and internal pressure.

Figure 5 shows the buckling stress and postbuckling be-
havior obtained when plotted as a function 7 for various
values of 6. These curves are again computed when the
pressure is zero. The open circles along the ordinate of the
graphs represent solutions to the case when 7 = 0 which is
equivalent to a panel with pinned edges. A large value of
7 approaches the case where the panel is clamped along the
edge. The inclusion of the 7 term increases the critical
stress and moves the sensitivity parameter b toward a more
positive value. A large value of 7, however, will not neces-
sarily make b positive as is shown for the 6 = 0.9 case; but
its magnitude is reduced considerably. As discussed by
Koiter,1 wing panels have values of 6 considerably smaller
than 6 = 0.5, and fuselage panels are normally in the range
of 0.4 < 6 < 2.0. Thus, the large effects of 7 on the <rcr
for low values of 6 and on the b parameter for larger values
of 6 are, indeed, advantageous, since in practical applications
it is expected that 7 will vary from 10 to 100. The increase
in acr as a function of 7 at 6 = 0.5 is about 65%, and larger
increases may be expected for smaller values of 6. On the
other hand, at 6 — 0.9, the largest value of 6 presented, the
increase in acr is small, while the change in 6 is greatest and
is tending toward less instability in the initial postbuckling
behavior.

Figure 6 is a cross plot of many of the features noted in
Figs. 3 and 5. Here, for various values of 7, the 6CT, which
is the value of 6 at zero imperfection sensitivity, are plotted
as a function of internal pressure. The regions above the
solid curves are the regions of imperfection sensitivity. As
was suggested by Fig. 5, the regions of sensitivity in Fig. 6
decrease with increasing 7 up to a point of about 7 = 1000.
Higher values of 7 are expected to reduce the sensitivity re-
gion very little. It is interesting to observe that initially
even a small value of 7 (say 7 = 10) decreases the sensitivity
region significantly from the 7 = 0 curve.

Figure 7 shows graphically the effect of 7 and pressure on
acr and b for the particular value of 6 = 0.9. As was indi-
cated previously, aCT increases with increasing both 7 and
pressure. Actually, the increase in crcr as a function of pres-
sure is almost linear for each value of 7. Also at 7 = 100,
the pressure required to yield a value of b = 0 is about
60% lower than at 7 = 0. Even the low value of 7 = 10 re-
duces this pressure over 30%.

Finally, in Fig. 8 the 6 = 0.9 case is again presented show-
ing the effects of pressure on the initial postbuckling slope
K for various values of 7. This parameter indicates the
initial direction of displacement after buckling has occurred.
The prebuckled slope is the solid line and the initial post-
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buckling slopes are given by the dashed lines. The combined
effects of increasing 7 and pressure increase the direction of
initial postbuckling from an extreme slope almost doubling
back on the original prebuckling displacement curve to a
slope of roughly half that of the prebuckled slope. The
wide variation in initial postbuckling slopes shown in Fig. 8a
can be expected to decrease as 6 decreases. The extreme
slopes at low pressure move counterclockwise with decreasing
6, while the limiting slope at high pressure changes very
slightly. For example, the 6 = 0.7 case for 7 = 0 closely
approximates that given in Fig. 8c.

6. Concluding Remarks

The effects of internal pressure and edge stiffener torsional
rigidity on buckling and initial postbuckling behavior have
been presented. The study is conducted within the context
of the Karman-Donnell equations and Koiter's initial post-
buckling theory. It has been shown that even moderate
values of torsional rigidity significantly reduce the panel
imperfection sensitivity. An internal pressure can also aid
in making the panel more insensitive to small geometric
imperfections. In addition, the values of the panel flatness

parameter for which the analysis is valid is increased by in-
cluding the torsional rigidity of the stiff ener. In the limit
where torsional rigidity and internal pressure are zero, the
present results reduce exactly to the original results of
Koiter.
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Finite-Element Analysis of Large Elastic-Plastic Transient
Deformations of Simple Structures

RICHARD W. H. Wu* AND EMMETT A. WITHER!
Massachusetts Institute of Technology, Cambridge, Mass.

The assumed-displacement finite-element method which is based upon the Principle of
Virtual Work is extended to analyze the large-deflection transient responses of simple struc-
tures including elastic-plastic, strain-hardening, and strain-rate material behavior. The re-
sulting equations of motion are solved by a direct timewise numerical integration scheme us-
ing the central-difference procedure. Numerical examples are carried out and compared with
both finite-difference predictions and experimental results for an impulsively loaded beam and
an impulsively loaded ring.

Introduction

THE conventional closed form analysis/prediction of
structural transient responses which involve large de-

formations and nonlinear material behavior is rendered
practically impossible by the complexities arising from these
two sources of nonlinearities. In practice, therefore, one is
usually forced to employ numerical prediction methods.

Numerical methods of structural analysis may be described
conveniently in two categories. In the first category is the
"finite-element method" which is most systematically based
upon variational principles1; the solid continuum is idealized as
an assemblage of a finite number of regions which are con-
nected at a finite number of nodes along inter element (or
interregion) boundaries, with the geometry and the material
properties of the continuum being faithfully retained in the
idealized structural assembly. The second category, "the
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numerical solution of the governing algebraic and/or differ-
ential equations," is based upon mathematically approxi-
mating and solving the differential equations by either finite
differences2"4 or by numerical integration.5"7 In the past
several years, the finite-element method has undergone inten-
sive development and has proved to be a very effective and
powerful method for analyzing certain classes of problems
such as small-deflection, linear-elastic, static, and dynamic
response behavior.8"11 For predicting large-deflection, elas-
tic-plastic transient response of structures, the finite-difference
approach3'4-12"14 has been much more extensively developed
than the finite-element method; corresponding developments
of the finite-element method to treat this class of problems
would be valuable. A contribution to this area is the subject
of this study.

Among the finite-element analyses for large-deflection
linear-elastic behavior including both static and transient
responses are the developments reported in Ref. 15 for shells
of revolution. In Ref. 15, large deflection terms are treated
as equivalent force terms which are derived from the pertinent
energy expressions in the variational formulation employed;
for those special terms, a linear rather than a cubic displace-
ment field for the normal displacement is used in order to


